Large-Deviation Results for Discriminant Statistics of Gaussian Locally Stationary Processes

نویسنده

  • Junichi Hirukawa
چکیده

This paper discusses the large-deviation principle of discriminant statistics for Gaussian locally stationary processes. First, large-deviation theorems for quadratic forms and the log-likelihood ratio for a Gaussian locally stationary process with a mean function are proved. Their asymptotics are described by the large deviation rate functions. Second, we consider the situations where processes are misspecified to be stationary. In these misspecified cases, we formally make the log-likelihood ratio discriminant statistics and derive the large deviation theorems of them. Since they are complicated, they are evaluated and illustrated by numerical examples. We realize the misspecification of the process to be stationary seriously affecting our discrimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Likelihood Approach for Non-Gaussian Locally Stationary Processes

An application of empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we calculate the asymptotic distribution of empirical likelihood ratio statistics. It is shown that empirical likelihood method enables us to make inference on various important indices in time series analysis. Furthermore,...

متن کامل

On large deviations in testing simple hypotheses for locally stationary Gaussian processes

We derive a large deviation result for the log-likelihood ratio for testing simple hypotheses in locally stationaryGaussian processes. This result allows us to find explicitly the rates of exponential decay of the error probabilities of type I and type II for Neyman–Pearson tests. Furthermore, we obtain the analogue of classical results on asymptotic efficiency of tests such as Stein’s lemma an...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Estimation for Non-Gaussian Locally Stationary Processes with Empirical Likelihood Method

An application of the empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we give the asymptotic distributions of the maximum empirical likelihood estimator and the empirical likelihood ratio statistics, respectively. It is shown that the empirical likelihood method enables us to make inferen...

متن کامل

Moderate deviations for log-like functions of stationary Gaussian processes

A moderate deviation principle for nonlinear functions of Gaussian processes is established. The nonlinear functions need not be locally bounded. Especially, the logarithm is allowed. (Thus, small deviations of the process are relevant.) Both discrete and continuous time is treated. An integrable power-like decay of the correlation function is assumed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ADS

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012